What Every Oncologist Should Know About Geriatric Assessment for Older Patients With Cancer: Young International Society of Geriatric Oncology Position Paper

Kah Poh Loh, Enrique Soto-Perez-de-Celis, Tina Hsu, Nienke A. de Glas, Nicolò Matteo Luca Battisti, Capucine Baldini, Manuel Rodrigues, Stuart M. Lichtman, and Hans Wildiers

Abstract

Aging is a heterogeneous process. Most newly diagnosed cancers occur in older adults, and it is important to understand a patient’s underlying health status when making treatment decisions. A geriatric assessment provides a detailed evaluation of medical, psychosocial, and functional problems in older patients with cancer. Specifically, it can identify areas of vulnerability, predict survival and toxicity, assist in clinical treatment decisions, and guide interventions in routine oncology practice; however, the uptake is hampered by limitations in both time and resources, as well as by a lack of expert interpretation. In this review, we describe the utility of geriatric assessment by using an illustrative case and provide a practical approach to geriatric assessment in oncology.

CASE

J.K. is a 73-year-old man who presented to his primary care physician complaining of bright red blood per rectum. He has a medical history of coronary artery disease, hypertension, hyperlipidemia, and cerebrovascular disease. He is on aspirin, lisinopril, metoprolol, and atorvastatin. A subsequent colonoscopy revealed a 3-cm mass in his descending colon. Biopsy of the mass showed invasive adenocarcinoma. He underwent computed tomography scans of the chest, abdomen, and pelvis, which showed no evidence of metastases. A laparoscopic colectomy was performed, and his cancer was staged as T2N2 (stage III) and microsatellite stable. He is referred to you to discuss adjuvant chemotherapy.

INTRODUCTION

Older adults are the fastest-growing segment of the population. According to the International Aging Reports, adults age 65 years or older comprised 8.5% of the total population in 2015, but this is projected to increase to 12% in 2030 and to 16.7% in 2050. More than 60% of patients who are newly diagnosed with cancer are age 65 years or older, which makes this the most common population seen in an oncology practice. Older adults are heterogeneous and have varying degrees of comorbidities, functional impairments, geriatric syndromes, and social support systems. Because older adults are not well represented in clinical trials and those who are included are often a selection of fit older adults, it can be challenging for oncologists...
to apply evidence-based medicine to this population. This can lead to undertreatment and overtreatment and impact patient morbidity and mortality.

Geriatric assessment has been advocated as a way to provide detailed evaluation of the health status of an older adult. Although recommended by the National Comprehensive Cancer Network and the International Society of Geriatric Oncology (SIOG), geriatric assessment is not routinely implemented in oncology practice as it is perceived to be time and resource consuming. Although the time commitment and burden on patients and caregivers are concerns, recently developed cancer-specific geriatric assessment tools can gather a wealth of information in a relatively short amount of time. In this work, we briefly describe the utility of geriatric assessment in the care of older adults with cancer and provide a practical approach to geriatric assessment in oncology.

WHAT IS A GERIATRIC ASSESSMENT?

A geriatric assessment is a multidisciplinary diagnostic process that can detect medical, psychosocial, and functional problems that are not identified by routine evaluation. This can subsequently guide the management of identified problems. It was initially developed and has been validated in the general geriatric population for detecting vulnerability and aging-related issues that are associated with mortality. These geriatric assessment tools were subsequently simplified and transferred to oncology clinics for the assessment of older patients with cancer.

As shown in Table 1, a geriatric assessment includes an assessment of several domains, including functional status, psychological health, polypharmacy, comorbidity, nutrition, social support, and cognition. There are several well-validated tools available to assess these domains. Most of the instruments can be self-administered. The choice of specific geriatric assessment tools in clinical practice should be tailored to the local health structures and resources. If geriatric specialists are available, geriatric assessment tools that are familiar to and used by them should be considered. Although not part of a geriatric assessment, patient and caregiver goals, as well as end-of-life preferences, should also be discussed before the implementation of a treatment plan.

WHY PERFORM A GERIATRIC ASSESSMENT?

Geriatric assessment should be performed in older patients with cancer for multiple reasons. First, it has been shown that geriatric assessment can identify areas of vulnerability that may otherwise be missed in routine oncology visits. For example, in patients with an Eastern Cooperative Oncology Group performance status score of < 2, 38% required assistance in instrumental activities of daily living, such as taking medications, transportation, using the telephone, or managing finances. In addition, a recent study has shown that, in 51.2% of patients, a geriatric assessment can identify abnormalities that are not otherwise detected during regular consultation, including poor physical functioning (40.1%), poor nutritional status (37.6%), falls (30.5%), depression (27.2%), and cognitive impairment (19.0%). These impairments were independently associated with worse outcomes in patients with cancer.

Second, geriatric assessment can predict survival and adverse events of treatment to assist clinical decision making. Treatment decisions in older patients with cancer can be challenging, as other comorbid conditions may limit life expectancy and the ability to tolerate oncologic treatment. A geriatric assessment can assist this process, as it can predict the risk of dying from causes other than cancer, and it can predict treatment toxicity. A systematic review of 51 studies that assessed the predictive value of geriatric assessment on survival concluded that several geriatric assessment domains, including performance status, geriatric depression scale, and nutritional status, were independent predictors of mortality.

A geriatric assessment can also predict early death—6 and 12 month overall survival—in older patients. Several tools that use data from a geriatric assessment, such as the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) and the Cancer and Aging Research Group (CARG) chemotherapy toxicity calculator, have been developed to assist in the prediction of chemotherapy toxicity. The Pre-Operative Assessment of Cancer in the Elderly study also demonstrated that 30-day postoperative morbidity could be predicted by the number of impaired domains that were detected on a geriatric assessment.

In hematologic malignancies, functional impairment identified on geriatric assessment was associated with hospitalizations. Furthermore, it has been shown that a geriatric assessment can change treatment decisions for 5% to 50% of older patients. In these studies, 2% to 28% of patients had changed to more intensive treatment, whereas 17% to 37% had changed to less intensive treatment. Third, geriatric assessment identifies areas where interventions can be performed, such as dietary advice, physical therapy, and social support, which can help patients tolerate...
and complete prescribed systemic therapy. Kalsi and colleagues \(^5^4\) compared the outcomes of older patients who underwent chemotherapy and who received interventions on the basis of issues that were identified on a geriatric assessment with those patients who received standard oncology care. High-risk patients were defined on the basis of the presence of active comorbidity, significant quality of life or functional difficulties, and geriatric assessment–detected vulnerabilities. Although the overall toxicity rate was not significantly different, high-risk patients in the geriatric assessment arm were

Table 1. Domains of a Full Geriatric Assessment and Examples of Tools Used

<table>
<thead>
<tr>
<th>Tool by Domain</th>
<th>Time to Administer (min)</th>
<th>Abnormal Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic and social status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditions of living, marital status, educational level, financial resources, social activities, family support</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Identification of the caregiver and burden (Zarit Burden Interview)</td>
<td>15-20</td>
<td>> 20</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlson comorbidity index (^1^1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIRS (^1^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIRS-G (^1^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Health Section (subscale of OARS) (^8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplified comorbidity score (^1^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypharmacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beers criteria (^1^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOPP and START criteria (^1^6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL (Katz index) (^1^7)</td>
<td>< 6</td>
<td></td>
</tr>
<tr>
<td>IADL (Lawton scale) (^1^8)</td>
<td>< 8</td>
<td></td>
</tr>
<tr>
<td>Visual and/or hearing impairment, regardless of use of glasses or hearing aids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility problem (requiring help or use of walking aid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timed Get Up and Go (^1^9)</td>
<td>≥ 14s</td>
<td></td>
</tr>
<tr>
<td>Hand grip strength</td>
<td>< 1 m·s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Walking problems, gait assessment, and gait speed (^2^0,2^1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reported No. of falls (within different time frames)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini–Mental State Examination (^2^2,2^3)</td>
<td>10-15</td>
<td>< 24</td>
</tr>
<tr>
<td>Montreal Cognitive Assessment (^2^4,2^5)</td>
<td></td>
<td>< 26</td>
</tr>
<tr>
<td>Clock-drawing test (^2^6)</td>
<td>< 5</td>
<td></td>
</tr>
<tr>
<td>Blessed Orientation–Memory–Concentration Test (^2^7)</td>
<td>> 4</td>
<td></td>
</tr>
<tr>
<td>Mini-Cog (^2^7,2^8)</td>
<td>< 4</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Domains of a Full Geriatric Assessment and Examples of Tools Used (continued)

<table>
<thead>
<tr>
<th>Tool by Domain</th>
<th>Time to Administer (min)</th>
<th>Abnormal Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDS (Mini-GDS, GDS-15, GDS-30) (^2^9,3^0)</td>
<td>15</td>
<td>Mini-GDS < 1; GDS-15: > 5; GDS-30: > 10</td>
</tr>
<tr>
<td>Hospital Anxiety and Depression Scale (^3^1,3^2)</td>
<td></td>
<td>> 7</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body-mass index (weight and height)</td>
<td>< 23</td>
<td></td>
</tr>
<tr>
<td>Weight loss (unintentional loss in 3 or 6 months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini-Nutritional Assessment (^3^3,3^4)</td>
<td>< 24</td>
<td></td>
</tr>
<tr>
<td>Dentition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOB-T (^3^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geriatric syndrome (^3^6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dementia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delirium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incontinence (fecal and/or urinary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoporosis or spontaneous fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neglect or abuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure to thrive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure ulcer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcopenia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ADL, activity of daily living; CIRS, Cumulative Illness Rating Scale; CIRS-G, Cumulative Illness Rating Scale–Geriatrics; GDS, Geriatric Depression Scale; IADL, instrumental activity of daily living; MOB-T, Mobility Tiredness Test; OARS, Older Americans Resources and Services; PS, performance status; START, Screening Tool to Alert Doctors to Right Treatment; STOPP, Screening Tool of Older Person’s Prescriptions.
more likely to complete cancer treatment and required fewer treatment modifications.54

\textbf{WHEN TO PERFORM A GERIATRIC ASSESSMENT}

Because biologic age often does not correspond to chronologic age, it is difficult to define the chronologic age above which a geriatric assessment should be done systematically. Several geriatric oncology experts recommend that all patients age 75 years of older should receive a geriatric assessment.55 International organizations have also recommended that a geriatric assessment be performed in all older patients—those age 70 years or older—or at least in those older patients before the initiation of anticancer therapy.3,4 The selection of the age cutoff may also depend on available resources.

\textbf{GERIATRIC SCREENING TOOLS}

Given the time and resource barriers that are associated with geriatric assessment, the use of a geriatric screening tool to identify frail and/or vulnerable patients who are most likely to benefit from a geriatric assessment is appealing. Multiple screening tools have been developed, both in the general geriatric population and the cancer population. Some of them have been specifically tested in the cancer setting. These vary in the domains assessed, the length of the assessment, the time to complete, and test properties. Some of these screening tools, such as the Geriatric 8 (G8) and Senior Adult Oncology Program 2,56,57 are composed of items that sample several geriatric domains, whereas others, such as the abbreviated Comprehensive Geriatric Assessment, consist of selected questions from validated geriatric tools, such as the Geriatric Depression Screen and Mini-Mental Status Exam. Characteristics of the most widely used and tested screening tools in older adults with cancer are listed in Table 2. The choice of screening tool depends on the clinical resources that are available at a center, the goals of screening, and familiarity with the tool. Although the updated SIOG recommendations on screening tools suggests that the G8 (shown in Appendix Table A1, online only55) has been the best studied with highest sensitivity, the choice of screening tools depends on context, and no tool is recommended over another.66 For oncologists with limited staff support, a fully self-reported geriatric screening tool, such as the Vulnerable Elderly Survey-13 (VES-13; shown in Appendix Fig A1, online only67), that can be completed in <10 minutes (median, 4 minutes) may be considered.58,68 For a more in-depth review of geriatric screening tools tested in the oncology population, we refer to a recent systematic review by Hamaker and colleagues or to the SIOG guidelines on this topic.66,69

The value of utilizing geriatric screening tools if patients who are positive upon screening cannot receive a subsequent geriatric assessment is debated. One feasible option is the use of the self-reported geriatric assessment developed by the Alliance—formerly Cancer and Leukemia Group B—that is primarily self-reported in those patients who screen positive. Geriatric assessment tools can be completed by patients and/or caregivers using paper and pencil or a touchscreen computer in 15 to 20 minutes, and is available online (www.mycarg.org/tools) in English, Spanish, and Chinese9 (Fig 1). Other options are to integrate the geriatric assessment within existing local geriatric clinics. A useful feature of the online CARG geriatric assessment

\begin{table}[h]
\centering
\caption{Selected Geriatric Screening Tools}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
Tool & No. of Items & Score Range & Time to Perform (min) & Abnormal Score & Sensitivity for Abnormal CGA (%) & Specificity for Abnormal CGA (%) & PPV (%) & NPV (%) & Positive Screen (%) \\
\hline
G856,58,59 & 8 & 0-17 & 4.4 & ≤ 14 & 65-92 & 3-75 & 44-86 & 8-78 & 64-94 \\
VES-1360 & 13 & 0-10 & 5.7 & ≥ 3 & 39-88 & 62-100 & 60-100 & 18-88 & 29-60 \\
TRST61 & 5 & 0-6 & 2 & ≥ 1 & 91-92 & 42-50 & 81-87 & 63 & 74-82 \\
GFI59,62 & 15 & 0-15 & N/A & ≥ 4 & 30-66 & 47-87 & 86-94 & 40-59 & 64-79 \\
Abbreviated CGA63 & 15 & – & 4 & ≥ 1 & 51 & 97 & 97 & 48 & 68 \\
Fried frailty criteria63 & 5 & – & 5 & ≥ 3 & 37-87 & 49-86 & 77-95 & 16-66 & 66-88 \\
SAOP254 & 27 & – & N/A & ≥ 1 & 100 & 40 & 90 & 100 & 84 \\
\hline
\end{tabular}
\end{table}

Abbreviations: CGA, comprehensive geriatric assessment; G8, Geriatric 8; GFI, Groningen Frailty Index; NPV, negative predictive value; PPV, positive predictive value; SAOP2, Senior Adult Oncology Program 2; TRST, Triage Risk Screening Tool; VES-13, Vulnerable Elders Survey-13.
tool is that, once the patient completes the assessment, a set of recommendations that are tailored toward identified issues can be visualized and printed as a PDF file. These can assist a busy clinician to interpret the results, and to tailor and implement specific interventions for the patients.

Even if a geriatric assessment cannot be performed, geriatric screening tools can provide useful information, and abnormal results in these tools have been associated with cancer outcomes. An abnormal G8, VES-13, and Triage Risk Screening Tool have been associated with functional decline and poorer survival.60,61,70 The Groningen Frailty Index has also been associated with worse survival.46,71 Thus, it may not be unreasonable to consider performing a geriatric screen even in those centers in which a subsequent full geriatric assessment would not be possible. Geriatric screening tools provide a rough, but objective, view of patients’ underlying health status, and responses on individual components of the screening tools may unmask underlying impairment.

OTHER BRIEF MEASURES AND GERIATRIC ASSESSMENT–BASED TOOLS

Aside from the geriatric screening tools described above, several other brief measures are predictive of important outcomes that may influence treatment decisions. The Timed Up and Go (TUG) is a brief assessment of a patient’s mobility and balance that can be easily administered using a chair, a stopwatch, and a 3-m walkway. The tester asks the patient to stand, walk 3 m, turn around, walk back, and sit.19 No specific training is needed to perform this test. A good example of how to perform a TUG can be found in a free online video produced by the Centers for Disease Control and Prevention.72 A TUG of > 13 seconds is associated with increased risk of falls in community-dwelling adults.73 In patients with cancer, a TUG of > 20 seconds has been associated with shorter survival and three times higher odds of major postoperative complications.45,74 An abnormal score (≥ 5) on the Geriatric Depression Scale-15, which is a...
self-reported 15-item measure, is also predictive of an increased risk of functional decline.75

Two geriatric assessment–based tools, the CARG chemotherapy toxicity calculator (shown in Appendix Table A2, online only76) and the CRASH score,76 can also be used by health care providers to understand the patient’s toxicity risk and guide shared decision-making when starting a new line of treatment in an older patient.78,79 These two calculators, which can be freely accessed online, use patient, tumor, and geriatric assessment information to predict the probability of experiencing grade ≥ 3 toxicities. The CARG tool, for instance, uses data that had been already obtained during a regular clinical encounter—age, tumor type, planned chemotherapy, weight, height, creatinine, and hemoglobin—and adds five additional questions regarding falls, social support, the ability to take medications, hearing impairment, and physical performance.80 Both CRASH and CARG scores have been shown to be superior to other tools that are commonly used to predict toxicity in oncology practice, such as the Karnofsky performance status.86,77,80 Figure 1 contains a list of selected free online resources that can be used in everyday clinical practice to assess older adults with cancer.

Although many models for the delivery of geriatric oncology care have been developed, one size does not fit all clinical practices or settings36,81; however, regardless of the available resources, health care providers who care for older patients with cancer should make an effort to foster collaboration with available institutional or external resources, such as geriatricians, social workers, physical and occupational therapists, pharmacists, and nutritionists, and work together to provide care for patients with deficits that were identified using screening tools or geriatric assessments.55,82 Fostering these multidisciplinary collaborations may allow for the referral of vulnerable patients to a geriatric medicine provider or geriatric oncologist, which, in turn, could have a positive effect on the outcomes of cancer treatments.

GERIATRIC ASSESSMENT FOR RADIATION AND SURGICAL ONCOLOGY

Although a larger body of work on geriatric assessment exists for older patients who received systemic cancer treatment, a systematic review found that components of the geriatric assessment, such as functional status, cognition, and depression, were consistently associated with worse postoperative outcomes.83 Some of these geriatric assessment components—functional status, cognition, depression, nutritional status, medication review, and frailty—are recommended in the checklist for optimal preoperative assessment of older patients who undergo surgery by the American College of Surgeons.84 Research in radiation oncology is scant, but a prospective study has suggested that impaired score on VES-13 was associated with a higher probability of not completing radiation.85 Readers are referred to a review on best practices in radiation oncology for older adults with cancer by SIOC.96

OUR RECOMMENDED APPROACH

All oncologists should strive to include some form of geriatric assessment in their everyday clinical practice (Table 3). We believe that it is not only feasible, but necessary to provide older patients with high-quality cancer care. During the last decade, a huge effort has been undertaken to make the geriatric assessment less burdensome and accessible to non-geriatricians, and current cancer-specific geriatric assessment tools are easy to perform, even in busy clinical settings. In cancer centers in which resources are more widely available, a full geriatric assessment should be performed in all older patients with cancer age 70 years and older who are considered for any cancer treatment, as well as younger patients with age-related health concerns. The exact tools may differ as long as the geriatric assessment includes the following domains: functional status, psychological health, polypharmacy, comorbidities, nutrition, social support, and cognition (Table 1). In these high-resource settings, the availability of multidisciplinary teams makes it feasible to implement multicomponent interventions that are aimed at ameliorating or solving identified deficits.

The mean time to completion of a geriatric assessment ranges from 15 to 30 minutes on the basis of published studies.8,9,87 We recommend mailing the self-administered portions of the geriatric assessment to patients before their appointment so they can complete these at home to limit disruptions to clinic workflow and to allow patients to complete the geriatric assessment at their leisure. If they are unable to complete the assessment at home, patients can complete these in the clinic while waiting to be seen by their oncologist. After that, a trained nurse or patient-care technician can perform the objective assessment of cognition and physical function (approximately 5 to 10 minutes). Alternatively, the assessment of cognition and physical function can be incorporated into the physical examination by the oncologist. If a comprehensive geriatric assessment is primarily used to guide supportive care interventions during cancer treatment, it can also be done over multiple clinic visits.
We have also performed the assessment in the infusion center while patients received cancer treatment or supportive care interventions, such as intravenous fluids.

Oncologists who practice in settings with less support should take advantage of several of the tools described in this article and include them in their everyday clinical workflow. Screening tools could be used to identify fit older patients who do not require additional assessments or interventions and highlight domains that may require more attention, as well as those patients who may be at high risk of chemotherapy toxicity or early mortality. Many of these can be performed by oncologists and only require several minutes.

We recommend that oncologists consider using either the G8 or VES-13 to screen patients, as these are the two most commonly studied tools (Table 2, Appendix Table A1, and Fig 1). If a nurse practitioner or other staff member is available, the G8 tool can be administered before the oncology consultation. In practices where this is not possible, patients could also complete a self-reported screening tool, such as the VES-13, while waiting to see the oncologist. The next step for patients who screen positive depends on the existing resources at the practice and in the community. If a geriatrician is readily available, patients who screen positive for a full geriatric assessment should be referred to a geriatrician for comanagement of the patient.

Table 3. Proposed Approaches for the Implementation of Geriatric Assessment and/or Geriatric Screening Tools in a Routine Oncology Setting

<table>
<thead>
<tr>
<th>Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geriatric assessment in all patients age 70 years and older are considered for any cancer treatment and younger patients with age–related health concerns in high-resource settings</td>
</tr>
<tr>
<td>Self-administered portion*</td>
</tr>
<tr>
<td>Functional evaluation—for example, ADL and IADL</td>
</tr>
<tr>
<td>Depression—for example, GDS-5</td>
</tr>
<tr>
<td>Medications are generally evaluated at clinic visits; for older individuals, greater emphasis is needed to minimize potential drug–drug interactions and deprescribe unnecessary medications</td>
</tr>
<tr>
<td>Comorbidity is often assessed at clinic visits, but oncologists may consider using a validated comorbidity index to quantify comorbidity</td>
</tr>
<tr>
<td>Nutritional evaluation—for example, weight loss and MNA</td>
</tr>
<tr>
<td>Social support; living situation and need for additional home support for older individuals—a social worker or other allied health care professional will often inquire about these circumstances</td>
</tr>
<tr>
<td>Health care professional portion†</td>
</tr>
<tr>
<td>Cognitive screening—for example, Mini-Cog or MMSE</td>
</tr>
<tr>
<td>Physical performance—for example, TUG</td>
</tr>
<tr>
<td>Chemotherapy toxicity risk calculation—for example, CARG or CRASH toxicity scores</td>
</tr>
</tbody>
</table>

Geriatric screening tool (one of the following) if at risk, followed by geriatric assessment described above—this may spare the efforts of full geriatric assessment in 20%-40% of patients

- Geriatric B
- Vulnerable Elders Survey-13
- Triage Risk Screening Tool
- Groningen Frailty Index
- Senior Adult Oncology Program 2
- Abbreviated Geriatric Assessment
- Fried frailty criteria

Low-resource setting or if time is limited (one or more of the following):

- One of the geriatric screening tools described above and chemotherapy toxicity risk calculation—for example, CARG or CRASH toxicity scores
- Referral to geriatrician if screened positive for impairment on geriatric screening tools
- If a geriatrician is not available, consider other tests on the basis of clinical impression and health areas at risk—for example, as indicated by screening tool; may consider ADL, IADL, and Mini-Cog in addition to the geriatric screening tool

Abbreviations: ADL, activity of daily living; CARG, Cancer and Aging Research Group; CRASH, Chemotherapy Risk Assessment Scale for High-Age Patients; GDS–5, Geriatric Depression Scale–5; IADL, instrumental activity of daily living; MMSE, Mini–Mental State Examination; MNA, Mini–Nutritional Assessment; TUG, Timed Get Up and Go.

*The self-administered portion can be done at home before the clinic visit or at the waiting area before physician encounter.
†The health care professional portion can be done while patients are waiting to be seen. Geriatric assessment can also be done over multiple visits.
during treatment. If a geriatrician is not available, patients could undergo TUG and the online CARG self-reported geriatric assessment, which will provide the oncologist with a set of recommendations that could be discussed with the patient and implemented using resources available in the community, such as physical therapists, social workers, nutritionists, or pharmacists. If the online CARG self-reported geriatric assessment is not possible, an assessment of activity of daily living, instrumental activity of daily living, and cognition—using mini-Cog—should at least be considered.17,18,28

Finally, oncologists should use geriatric assessment–based calculators—CARG or CRASH score—to determine chemotherapy toxicity risks in all older adults with cancer. Although treatment modifications on the basis of these tools have not been shown to improve outcomes, the information can be helpful when discussing the risks and benefits of treatment, ultimately promoting shared decision-making. In addition, these tools could help clinicians identify high-risk patients who may require closer monitoring or follow-up, thus allowing for a more efficient use of available resources.

BACK TO THE CASE
In our 73-year-old patient, a G8 screening tool was performed, and he scored a 10 out of a total score of 17; therefore, he was sent to a geriatrician for a full geriatric assessment. He is independent with all activities of daily living, but does require assistance with shopping. He had two falls and has lost approximately 5 lbs in the preceding 6 months of his diagnosis. He screened negative for cognitive impairment (a score of 26 of 30 on Montreal Cognitive Assessment), but screened positive for depression (a score of seven out of 15 on the Geriatric Depression Scale-15). He reported good hearing and vision. He lives with his spouse at home. As a result of impairment in his functional status, he was referred to a physical therapist and was advised to exercise more frequently and consistently. For his weight loss, he was referred to a nutritionist for dietary advice. For his depression, mirtazapine was administered and he was also referred to a psychiatrist. The benefit of adjuvant chemotherapy was discussed, and the patient was told that his 5-year overall survival may improve by 7% on the basis of a pooled analysis of seven randomized trials in older adults with colon cancer.88 His CARG toxicity score translated to an 82% probability of grade 3 to 5 toxicities with single-agent standard dose chemotherapy (Appendix Fig A2, online only); this risk may be somewhat lower for fluorouracil, specifically—the score only takes into account single chemotherapy versus combination chemotherapy—but is likely to be substantial. The information was discussed with the patient and his family, and he ultimately decided not to undergo chemotherapy given the high risk of toxicities. He understood that the risk of colon cancer recurrence is higher and was willing to accept this possibility.

FUTURE DIRECTIONS AND CONCLUSION
In summary, understanding the health status of an older adult is just as important as understanding the underlying tumor biology. A geriatric assessment can identify areas of vulnerability, predict survival and toxicity, assist in clinical treatment decisions, and guide interventions in routine oncology practice. Ideally, all older patients who are being considered for cancer treatments should receive a geriatric assessment as part of their evaluation; however, in settings of limited time and resources, a geriatric screening tool could be used. Active research is ongoing to assess if geriatric assessment–guided interventions improve outcomes in older adults with cancer (ClinicalTrials.gov identifiers: NCT01915056 and NCT02107443). To disseminate the use of a geriatric assessment and the various available screening tools, education of oncologists and geriatricians on tools that are validated, efficient, and predictive of outcomes is needed. Finally, collaboration among oncologists, primary care physicians/geriatricians, nurses, social workers, physical therapists, occupational therapists, nutritionists, and pharmacists is crucial to increase the utilization of geriatric assessment and geriatric assessment–directed interventions.

Acknowledgment
Supported by a Long-Term International Fellowship from the Conquer Cancer Foundation (to E.S.P.-d.-C) and, in part, through the National Cancer Institute (Cancer Center Support Grant P30-CA008748; to S.M.L.).

Authors’ Disclosures of Potential Conflicts of Interest
Disclosures provided by the authors are available with this article at jop.ascopubs.org.

Author Contributions
Conception and design: Kah Poh Loh, Enrique Soto-Perez-de-Celis, Tina Hsu, Nienke A. de Glas, Nicolò Matteo Luca Battisti, Capucine Baldini, Stuart M. Lichtman, Hans Wildiers
Collection and assembly of data: Kah Poh Loh, Enrique Soto-Perez-de-Celis, Tina Hsu, Nienke A. de Glas, Nicolò Matteo Luca Battisti, Capucine Baldini
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

92 Volume 14 / Issue 2 / February 2018 • Journal of Oncology Practice
Downloaded from ascupubs.org by Amanda Patton on April 10, 2018 from 050.079.004.145
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.
References

72. YouTube: Tied Up and Go (TUG) test. https://www.youtube.com/watch?v=BA7Y_0LElGY
73. Shumway-Cook A, Brauer S, Woolacott M: Predicting the probability for falls in community-dwelling older adults using the Tied Up & Go Test. Phys Ther 80: 896-903, 2000
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

What Every Oncologist Should Know About Geriatric Assessment for Older Patients With Cancer: Young International Society of Geriatric Oncology Position Paper

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jop/site/ifc/journal-policies.html.

Kah Poh Loh
No relationship to disclose

Enrique Soto-Perez-de-Celis
No relationship to disclose

Tina Hsu
Consulting or Advisory Role: Celgene

Nienke A. de Glas
No relationship to disclose

Nicolò Matteo Luca Battisti
No relationship to disclose

Capucine Baldini
No relationship to disclose

Manuel Rodrigues
Consulting or Advisory Role: AstraZeneca
Research Funding: Bristol-Meyers Squibb, Merck Sharp & Dohme

Stuart M. Lichtman
Consulting or Advisory Role: Magellan Health

Hans Wildiers
Honoraria: LEO Pharma, TRM Oncology, Pfizer, Roche, Encore Medical
Consulting or Advisory Role: Teva Pharmaceuticals, Pfizer, Amgen, OncologyLive, Puma Biotechnology, Roche, Janssen Pharmaceuticals
Speakers’ Bureau: LEO Pharma, TRM Oncology, Pfizer, Roche, Encore Medical
Research Funding: Roche, Teva Pharmaceuticals
Expert Testimony: Pfizer, TRM Oncology
Travel, Accommodations, Expenses: Pfizer, Roche, LEO Pharma
Appendix

VES-13

1. Age __________________________

2. In general, compared to other people your age, would you say that your health is:
 □ Poor,* (1 POINT)
 □ Fair,* (1 POINT)
 □ Good,
 □ Very good, or
 □ Excellent

3. How much difficulty, on average, do you have with the following physical activities:
 □ No Difficulty □ A little Difficulty □ Some Difficulty □ A Lot of Difficulty □ Unable to do
 a. stooping, crouching or kneeling? □ □ □ □ * □ *
 b. lifting, or carrying objects as heavy as 10 pounds? ... □ □ □ □ * □ *
 c. reaching or extending arms above shoulder level? ... □ □ □ □ * □ *
 d. writing, or handling and grasping small objects? ... □ □ □ □ * □ *
 e. walking a quarter of a mile? □ □ □ □ * □ *
 f. heavy housework such as scrubbing floors or washing windows? □ □ □ □ * □ *

 SCORE: 1 POINT FOR EACH RESPONSE IN Q3a THROUGH f. MAXIMUM OF 2 POINTS

4. Because of your health or a physical condition, do you have any difficulty:
 a. shopping for personal items (like toilet items or medicines)?
 □ YES → Do you get help with shopping? □ YES * □ NO
 □ NO
 □ DON’T DO → Is that because of your health? □ YES * □ NO
 b. managing money (like keeping track of expenses or paying bills)?
 □ YES → Do you get help with managing money? □ YES * □ NO
 □ NO
 □ DON’T DO → Is that because of your health? □ YES * □ NO

© 2001 RAND

Fig A1. Vulnerable Elders Survey (VES-13); a score of ≥ 3 indicates impairment. Reprinted with permission from the Journal of the American Geriatrics Society. 58
c. walking across the room? USE OF CANE OR WALKER IS OK.
- YES → Do you get help with walking? □ YES * □ NO
- NO
- DON’T DO → Is that because of your health? □ YES * □ NO

d. doing light housework (like washing dishes, straightening up, or light cleaning)?
- YES → Do you get help with light housework? □ YES * □ NO
- NO
- DON’T DO → Is that because of your health? □ YES * □ NO

e. bathing or showering?
- YES → Do you get help with bathing or showering? □ YES * □ NO
- NO
- DON’T DO → Is that because of your health? □ YES * □ NO

SCORE: 4 POINTS FOR ONE OR MORE *
RESPONSES IN Q4a THROUGH Q4e

© 2001 RAND
Fig A2. Cancer and Aging Research Group (CARG) chemotherapy toxicity prediction tool. Based on the patient demographics, clinical and geriatric-assessment derived information, the probability of grade 3-5 toxicities was 82%.
Table A1. Geriatric 8 Screening Instrument

<table>
<thead>
<tr>
<th>Item</th>
<th>Response (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has food intake declined over the past 3 months as a result</td>
<td>0 = Severe decrease in food intake</td>
</tr>
<tr>
<td>of loss of appetite, digestive problems, and difficulties</td>
<td>1 = Moderate decrease in food intake</td>
</tr>
<tr>
<td>with chewing or swallowing?</td>
<td>2 = No decrease in food intake</td>
</tr>
<tr>
<td>Weight loss during the past 3 months</td>
<td>0 = Weight loss of > 3 kg</td>
</tr>
<tr>
<td></td>
<td>1 = Does not know</td>
</tr>
<tr>
<td></td>
<td>2 = Weight loss between 1 kg and 3 kg</td>
</tr>
<tr>
<td></td>
<td>3 = No weight loss</td>
</tr>
<tr>
<td>Mobility</td>
<td>0 = Bed or chair bound</td>
</tr>
<tr>
<td></td>
<td>1 = Able to get out of bed or chair but does not go</td>
</tr>
<tr>
<td></td>
<td>2 = Goes out</td>
</tr>
<tr>
<td>Neuropsychological problems</td>
<td>0 = Severe dementia or depression</td>
</tr>
<tr>
<td></td>
<td>1 = Mild dementia</td>
</tr>
<tr>
<td></td>
<td>2 = No psychological problems</td>
</tr>
<tr>
<td>Body mass index</td>
<td>0 = (\leq 19.0 \frac{\text{kg}}{\text{m}^2})</td>
</tr>
<tr>
<td></td>
<td>1 = 19.0-20.9 kg/m²</td>
</tr>
<tr>
<td></td>
<td>2 = 21.0-22.9 kg/m²</td>
</tr>
<tr>
<td></td>
<td>3 = (\geq 23.0 \frac{\text{kg}}{\text{m}^2})</td>
</tr>
<tr>
<td>Does the patient take more than three prescribed drugs per day?</td>
<td>0 = Yes</td>
</tr>
<tr>
<td></td>
<td>1 = No</td>
</tr>
<tr>
<td>Compared with other people of the same age, how does the patient</td>
<td>0 = Not as good</td>
</tr>
<tr>
<td>consider his health status?</td>
<td>0.5 = Does not know</td>
</tr>
<tr>
<td></td>
<td>1.0 = As good</td>
</tr>
<tr>
<td></td>
<td>2.0 = Better</td>
</tr>
<tr>
<td>Age</td>
<td>0 = (> 85) years</td>
</tr>
<tr>
<td></td>
<td>1 = 80-85 years</td>
</tr>
<tr>
<td></td>
<td>2 = (\leq 80) years</td>
</tr>
<tr>
<td>Total score</td>
<td>0-17</td>
</tr>
</tbody>
</table>

NOTE. A score of \(\leq 14 \) indicates impairment (modified from Beller et al\(^{56}\)).
Table A2. CARG Chemotherapy Toxicity Prediction Variables

<table>
<thead>
<tr>
<th>CARG Grade 3-5 Toxicity Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 72 years</td>
<td>2</td>
</tr>
<tr>
<td>GI/genitourinary cancers</td>
<td>3</td>
</tr>
<tr>
<td>Standard dose chemotherapy</td>
<td>3</td>
</tr>
<tr>
<td>Polychemotherapy</td>
<td>2</td>
</tr>
<tr>
<td>Anemia (male < 11 g/dL; female < 10 mg/dL)</td>
<td>3</td>
</tr>
<tr>
<td>Creatinine clearance < 34 mL/min (Jelliffe equation, ideal body weight)</td>
<td>3</td>
</tr>
<tr>
<td>Falls in the last 6 months (more than one)</td>
<td>3</td>
</tr>
<tr>
<td>Hearing impairment (fair/worse)</td>
<td>2</td>
</tr>
<tr>
<td>Limited ability to walk one block</td>
<td>2</td>
</tr>
<tr>
<td>(somewhat limited/limited a lot)</td>
<td></td>
</tr>
<tr>
<td>Requires assistance with medications</td>
<td>1</td>
</tr>
<tr>
<td>(some help/unable)</td>
<td></td>
</tr>
<tr>
<td>Decreased social activities</td>
<td>1</td>
</tr>
<tr>
<td>(limited at least sometimes)</td>
<td></td>
</tr>
</tbody>
</table>

Range: 0–25

Abbreviation: CARG, Cancer and Aging Research Group.